
The excited state deactivation of Shikonin rationalized from its naphthoquinone parent structures

Catarina M. Pinto¹*, Estefanía Delgado-Pinar¹, João Pina¹, J. Sérgio Seixas de Melo¹

¹University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal **catarina.m.pinto@student.uc.pt*

Shikonin, a naphthoquinone dye, is a molecule of colour¹ with natural origin and various medicinal properties including anti-inflammatory capacity, which shows solvent dependent properties. Previous studies on this molecule have reported its photostability and theoretical predictions on the more stable conformer.² However, a complete rationalization of its excited state deactivation mechanism is still to be done.

The chemical structure of shikonin shows a core structure of a di-hydroxy-naphthoquinone with an additional non-aromatic hydroxy group. The involvement of excited state intra/ or inter molecular proton transfer is found determinant in the deactivation mechanisms of aromatic molecules.^{1,3} In this work a comprehensive photophysical characterization has been undertaken for shikonin involving fast spectroscopic techniques (fs-UC and fs-TA)³ and TD-DFT calculations aiming to clarify the excited state deactivation mechanisms of this compound. In order to fully equate the contributions of the different hydroxy groups on this mechanism, a study involving its quinone derivatives (Figure 1), 5-hydroxy-1,4-naphthoquinone (DHNQ), 5,8-dihydroxy-1,4-naphthoquinone (DHNQ), 5,8-diacetyloxy-1,4-naphthoquinone (DiAc) and acetylshikonin (AcShk), was also performed.

Figure 1. Chemical structures of 5-hydroxy-1,4-naphthoquinone (5HNQ), 5,8-dihydroxy-1,4-naphthoquinone (DHNQ), shikonin (Shk), acetylshikonin (AcShk) and 5.8-dioxyacetyl-1,4-naphthoquinone (DiAc).

References

[1] J. S. Seixas de Melo, Photochemistry, 2018, 45, pp. 68-100.

- [2] J. Zhao, H. Dong, Y. Zheng, J. Phys. Chem. A, 2018, 122 (5), pp. 1200-1208.
- [3] J. S. Seixas de Melo, J. Pina, F. B. Dias, A. L. Maçanita, Applied Photochemistry, 2013, pp 533-85.